
Chapter 6

Sorting

Concepts:
. Natural sorting techniques
. Recursive sorting techniques
. Vector sorting
. Use of compareTo methods
. Comparator techniques

“Come along, children. Follow me.”
Before you could wink an eyelash

Jack, Knak, Lack, Mack,
Nack, Ouack, Pack, and Quack

fell into line, just as they had been taught.
—Robert McCloskey

COMPUTERS SPEND A CONSIDERABLE AMOUNT of their time keeping data in or-
der. When we view a directory or folder, the items are sorted by name or type
or modification date. When we search the Web, the results are returned sorted
by “applicability.” At the end of the month, our checks come back from the bank
sorted by number, and our deposits are sorted by date. Clearly, in the grand
scheme of things, sorting is an important function of computers. Not surpris-
ingly, data structures can play a significant role in making sorts run quickly. This
chapter begins an investigation of sorting methods.

6.1 Approaching the Problem

For the moment we assume that we will be sorting an unordered array of in-
tegers (see Figure 6.1a).1 The problem is to arrange the integers so that every
adjacent pair of values is in the correct order (see Figure 6.1b). A simple tech-
nique to sort the array is to pass through the array from left to right, swapping
adjacent values that are out of order (see Figure 6.2). The exchange of values
is accomplished with a utility method:

BubbleSort

public static void swap(int data[], int i, int j)

// pre: 0 <= i,j < data.length

// post: data[i] and data[j] are exchanged

{

int temp;

1 We focus on arrays of integers to maintain a simple approach. These techniques, of course, can
be applied to vectors of objects, provided that some relative comparison can be made between two
elements. This is discussed in Section 6.7.



120 Sorting

(b) Sorted

1 43 58 42 4
0 1 2 3 4 5 6 7 8 9 10 11

3

0 1 2 3 4 5 6 7 8 9 10 11

−1 0 1 2 3 3 4 40 42 43 58 65

40 2 65 0 −1 3

(a) Unordered

Figure 6.1 The relations between entries in unordered and sorted arrays of integers.

temp = data[i];

data[i] = data[j];

data[j] = temp;

}

After a single pass the largest value will end up “bubbling” up to the high-
indexed side of the array. The next pass will, at least, bubble up the next largest
value, and so forth. The sort—called bubble sort—must be finished after n − 1
passes. Here is how we might write bubble sort in Java:

public static void bubbleSort(int data[], int n)

// pre: 0 <= n <= data.length

// post: values in data[0..n-1] in ascending order

{

int numSorted = 0; // number of values in order

int index; // general index

while (numSorted < n)

{

// bubble a large element to higher array index

for (index = 1; index < n-numSorted; index++)

{

if (data[index-1] > data[index])

swap(data,index-1,index);

}

// at least one more value in place

numSorted++;

}

}

Observe that the only potentially time-consuming operations that occur in this
sort are comparisons and exchanges. While the cost of comparing integers is rel-



6.1 Approaching the Problem 121

40 2 43 65 −1 581 3 0 3 42 4

2 1 40 3 43 0 −1 58 3 42 4 65

2 3 40 0 −1 43 3 4 58 65

65

65

65

65

65

65

65

65

58

58

58

58

58

58

58

1 42

1 2 3 0 −1 40 4342 43

1 2 30 −1 3 40 424 43

43

43

43

43

43

42

42

42

42

42

2−1 3 3 404

40

40

40

40

58

58

43

43

42

42

40

40 65

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

0

0

0

0

01

0

1

−1 1

−1 1

−1 1

−1 0

1−1

1−1

Bubble

Detectable finish

Figure 6.2 The passes of bubble sort: hops indicate “bubbling up” of large values.
Shaded values are in sorted order. A pass with no exchanges indicates sorted data.



122 Sorting

atively small, if each element of the array were to contain a long string (for ex-
ample, a DNA sequence) or a complex object (for example, a Library of Congress
entry), then the comparison of two values might be a computationally intensive
operation. Similarly, the cost of performing an exchange is to be avoided.2 We
can, therefore, restrict our attention to the number of comparison and exchange
operations that occur in sorts in order to adequately evaluate their performance.

In bubble sort each pass of the bubbling phase performs n − 1 comparisons
and as many as n− 1 exchanges. Thus the worst-case cost of performing bubble
sort is O((n−1)2) or O(n2) operations. In the best case, none of the comparisons
leads to an exchange. Even then, though, the algorithm has quadratic behavior.3

Most of us are inefficient sorters. Anyone having to sort a deck of cards or a
stack of checks is familiar with the feeling that there must be a better way to do
this. As we shall see, there probably is: most common sorting techniques used in
day-to-day life run in O(n2) time, whereas the best single processor comparison-
based sorting techniques are expected to run in only O(n log n) time. (If multi-
ple processors are used, we can reduce this to O(log n) time, but that algorithm
is beyond the scope of this text.) We shall investigate two sorting techniques
that run in O(n2) time, on average, and two that run in O(n log n) time. In the
end we will attempt to understand what makes the successful sorts successful.

Our first two sorting techniques are based on natural analogies.

6.2 Selection Sort

Children are perhaps the greatest advocates of selection sort. Every October,
Halloween candies are consumed from best to worst. Whether daily sampling
is limited or not, it is clear that choices of the next treat consumed are based
on “the next biggest piece” or “the next-most favorite,” and so on. Children
consume treats in decreasing order of acceptability. Similarly, when we select
plants from a greenhouse, check produce in the store, or pick strawberries from
the farm we seek the best items first.

This selection process can be applied to an array of integers. Our goal is
to identify the index of the largest element of the array. We begin by assuming
that the first element is the largest, and then form a competition among all the
remaining values. As we come across larger values, we update the index of the
current maximum value. In the end, the index must point to the largest value.
This code is idiomatic, so we isolate it here:

SelectionSort

int index; // general index

int max; // index of largest value

// determine maximum value in array

2 In languages like Java, where large objects are manipulated through references, the cost of an
exchange is usually fairly trivial. In many languages, however, the cost of exchanging large values
stored directly in the array is a real concern.
3 If, as we noted in Figure 6.2, we detected the lack of exchanges, bubble sort would run in O(n)
time on data that were already sorted. Still, the average case would be quadratic.



6.2 Selection Sort 123

max = 0;

for (index = 1; index < numUnsorted; index++)

{

if (data[max] < data[index]) max = index;

}

(Notice that the maximum is not updated unless a larger value is found.) Now,
consider where this maximum value would be found if the data were sorted:
it should be clear to the right, in the highest indexed location. This is easily
accomplished: we simply swap the last element of the unordered array with the
maximum. Once this swap is completed, we know that at least that one value is
in the correct location, and we logically reduce the size of the problem by one.
If we remove the n − 1 largest values in successive passes (see Figure 6.3), we
have selection sort. Here is how the entire method appears in Java:

public static void selectionSort(int data[], int n)

// pre: 0 <= n <= data.length

// post: values in data[0..n-1] are in ascending order

{

int numUnsorted = n;

int index; // general index

int max; // index of largest value

while (numUnsorted > 0)

{

// determine maximum value in array

max = 0;

for (index = 1; index < numUnsorted; index++)

{

if (data[max] < data[index]) max = index;

}

swap(data,max,numUnsorted-1);

numUnsorted--;

}

}

Selection sort potentially performs far fewer exchanges than bubble sort: se-
lection sort performs exactly one per pass, while bubble sort performs as many
as n − 1. Like bubble sort, however, selection sort demands O(n2) time for
comparisons.

Interestingly, the performance of selection sort is independent of the order
of the data: if the data are already sorted, it takes selection sort just as long to
sort as if the data were unsorted. We can improve on this behavior through a
slightly different analogy.



124 Sorting

40 2 1 43 3 65 0 −1 58 3 42 440

65

58

43

42

40

4

3

43

43

65

65

65

65

65

58

58

5842

2

1

0−1

65

65

65

65

65

58

58

58

58

58

58

43

43

43

43

43

43

42

42

42

42

42

42

40

40

40

40

40

40

4

4

4

4

4

3

3

3

3

3

3

3

2

21

40

40

40

40

−1

−1

−1

−1

−1

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

43

43

3

3

3

3

3

3

4

4

4

4

4

0

0

0

0

0

0

58

42

423

3

3

3

3

3

0

0

42

−1

−1

−1

−1

−1 0

30 3

Select & exchange

Figure 6.3 Profile of the passes of selection sort: shaded values are sorted. Circled
values are maximum among unsorted values and are moved to the low end of sorted
values on each pass.



6.3 Insertion Sort 125

6.3 Insertion Sort

Card players, when collecting a hand, often consider cards one at a time, in-
serting each into its sorted location. If we consider the “hand” to be the sorted
portion of the array, and the “table” to be the unsorted portion, we develop a
new sorting technique called insertion sort.

In the following Java implementation of insertion sort, the sorted values are
kept in the low end of the array, and the unsorted values are found at the high
end (see Figure 6.4). The algorithm consists of several “passes” of inserting the

InsertionSort

lowest-indexed unsorted value into the list of sorted values. Once this is done,
of course, the list of sorted values increases by one. This process continues until
each of the unsorted values has been incorporated into the sorted portion of the
array. Here is the code:

public static void insertionSort(int data[], int n)

// pre: 0 <= n <= data.length

// post: values in data[0..n-1] are in ascending order

{

int numSorted = 1; // number of values in place

int index; // general index

while (numSorted < n)

{

// take the first unsorted value

int temp = data[numSorted];

// ...and insert it among the sorted:

for (index = numSorted; index > 0; index--)

{

if (temp < data[index-1])

{

data[index] = data[index-1];

} else {

break;

}

}

// reinsert value

data[index] = temp;

numSorted++;

}

}

A total of n − 1 passes are made over the array, with a new unsorted value
inserted each time. The value inserted may not be a new minimum or maximum
value. Indeed, if the array was initially unordered, the value will, on average,
end up near the middle of the previously sorted values. On random data the
running time of insertion sort is expected to be dominated by O(n2) compares
and data movements (most of the compares will lead to the movement of a data
value).

If the array is initially in order, one compare is needed at every pass to
determine that the value is already in the correct location. Thus, the inner loop



126 Sorting

1 2 40 3 65 0 −1 58 3 42 443

40 2

402 1 43 3 65 0 −1 58 3 42 4

1 2 40 3 65 0 −1 58 3 42 443

1 2 40 43 65

65

65

65

65

65

65

65

4

4

4

4

4

4

4

42

42

42

42

42

42

3

3

3

3

3

58

58

58

−1

−1

−1

0

0

583

0

−1

−1

−1

−1

−1

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3 4

40

40

40

40

40

40

40

43

43

43

43

43

43

43

58

58

58

58

42

42

Insert

1 43 3 65 0 −1 58 3 42 4

Figure 6.4 Profile of the passes of insertion sort: shaded values form a “hand” of sorted
values. Circled values are successively inserted into the hand.



6.4 Mergesort 127

is executed exactly once for each of n − 1 passes. The best-case running time
performance of the sort is therefore dominated by O(n) comparisons (there are
no movements of data within the array). Because of this characteristic, insertion
sort is often used when data are very nearly ordered (imagine sorting a phone
book after a month of new customers has been appended).

In contrast, if the array was previously in reverse order, the value must be
compared with every sorted value to find the correct location. As the compar-
isons are made, the larger values are moved to the right to make room for the
new value. The result is that each of O(n2) compares leads to a data movement,
and the worst-case running time of the algorithm is O(n2).

Note that each of these sorts uses a linear number of data cells. Not every
sorting technique is able to live within this constraint.

6.4 Mergesort

Suppose that two friends are to sort an array of values. One approach might be
to divide the deck in half. Each person then sorts one of two half-decks. The
sorted deck is then easily constructed by combining the two sorted half-decks.
This careful interleaving of sorted values is called a merge.

It is straightforward to see that a merge takes at least O(n) time, because
every value has to be moved into the destination deck. Still, within n − 1 com-
parisons, the merge must be finished. Since each of the n − 1 comparisons
(and potential movements of data) takes at most constant time, the merge is no
worse than linear.

There are, of course, some tricky aspects to the merge operation—for exam-
ple, it is possible that all the cards in one half-deck are smaller than all the cards
in the other. Still, the performance of the following merge code is O(n):

MergeSort

private static void merge(int data[], int temp[],

int low, int middle, int high)

// pre: data[middle..high] are ascending

// temp[low..middle-1] are ascending

// post: data[low..high] contains all values in ascending order

{

int ri = low; // result index

int ti = low; // temp index

int di = middle; // destination index

// while two lists are not empty merge smaller value

while (ti < middle && di <= high)

{

if (data[di] < temp[ti]) {

data[ri++] = data[di++]; // smaller is in high data

} else {

data[ri++] = temp[ti++]; // smaller is in temp

}

}

// possibly some values left in temp array



128 Sorting

while (ti < middle)

{

data[ri++] = temp[ti++];

}

// ...or some values left (in correct place) in data array

}

This code is fairly general, but a little tricky to understand (see Figure 6.5). We
assume that the data from the two lists are located in the two arrays—in the
lower half of the range in temp and in the upper half of the range in data (see
Figure 6.5a). The first loop compares the first remaining element of each list to
determine which should be copied over to the result list first (Figure 6.5b). That
loop continues until one list is emptied (Figure 6.5c). If data is the emptied list,
the remainder of the temp list is transferred (Figure 6.5d). If the temp list was
emptied, the remainder of the data list is already located in the correct place!

Returning to our two friends, we note that before the two lists are merged
each of the two friends is faced with sorting half the cards. How should this be
done? If a deck contains fewer than two cards, it’s already sorted. Otherwise,
each person could recursively hand off half of his or her respective deck (now
one-fourth of the entire deck) to a new individual. Once these small sorts are
finished, the quarter decks are merged, finishing the sort of the half decks, and
the two half decks are merged to construct a completely sorted deck. Thus,
we might consider a new sort, called mergesort, that recursively splits, sorts,
and reconstructs, through merging, a deck of cards. The logical “phases” of
mergesort are depicted in Figure 6.6.

private static void mergeSortRecursive(int data[],

int temp[],

int low, int high)

// pre: 0 <= low <= high < data.length

// post: values in data[low..high] are in ascending order

{

int n = high-low+1;

int middle = low + n/2;

int i;

if (n < 2) return;

// move lower half of data into temporary storage

for (i = low; i < middle; i++)

{

temp[i] = data[i];

}

// sort lower half of array

mergeSortRecursive(temp,data,low,middle-1);

// sort upper half of array

mergeSortRecursive(data,temp,middle,high);

// merge halves together

merge(data,temp,low,middle,high);

}



6.4 Mergesort 129

data

data

di ti ri

ritidi

di ti ri

ritidi

temp

data

temp

data

temp

temp

3 4 5 6 7 8 9 10 11 12 13

0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

12

1

4

5 1112

5 6 7 8 9 10 11 12 13

0

3

2 3 4 5

(a)

(b)

(d)

(c) 6 7 8 9 10 11 12 13

0 1 2

5

−1 58420 3 4

2 6531 4340

−1 0 1 2 3 3 4 40 42 43 58 65

65

−1 0 1 2 3 3 4 40 42 43 58

58423 4

654340

−1 0 1 2 3

6 12

8 3

6 0 0

Figure 6.5 Four stages of a merge of two six element lists (shaded entries are partic-
ipating values): (a) the initial location of data; (b) the merge of several values; (c) the
point at which a list is emptied; and (d) the final result.



130 Sorting

Merge

40 2 1 43 3 65 0 −1 58 3 42 4

40 2 1 43 3 65 0 −1 58 3 42 4

40 2 1 43 3 65 0 −1 58 3 42 4

40 2 1 43 3 65 0 −1 58 3 42 4

3 65 −1 58

40 43 3 65 0 −1 58 3

2 65 58 3

2 65 42

1 3

4 421 2

12 42 4

40 433 4 421

31 4340 −1 0 3 4 58

65583 4342−1 400 42

0−1

Split

Figure 6.6 Profile of mergesort: values are recursively split into unsorted lists that are
then recursively merged into ascending order.

Note that this sort requires a temporary array to perform the merging. This
temporary array is only used by a single merge at a time, so it is allocated once
and garbage collected after the sort. We hide this detail with a public wrapper
procedure that allocates the array and calls the recursive sort:

public static void mergeSort(int data[], int n)

// pre: 0 <= n <= data.length

// post: values in data[0..n-1] are in ascending order

{

mergeSortRecursive(data,new int[n],0,n-1);

}

Clearly, the depth of the splitting is determined by the number of times that n
can be divided in two and still have a value of 1 or greater: log2 n. At each
level of splitting, every value must be merged into its respective subarray. It
follows that at each logical level, there are O(n) compares over all the merges.
Since there are log2 n levels, we have O(n · log n) units of work in performing a
mergesort.

Mergesort is a common technique for sorting large sets of data that do not
fit completely in fast memory. Instead, the data are saved in temporary files that
are merged together. When the recursion splits the collection into subsets of a
manageable size, they can be sorted using other techniques, if desired.



6.5 Quicksort 131

One of the unappealing aspects of mergesort is that it is difficult to merge
two lists without significant extra memory. If we could avoid the use of this extra
space without significant increases in the number of comparisons or data move-
ments, then we would have an excellent sorting technique. Our next method
demonstrates an O(n log n) method that requires significantly less space.

6.5 Quicksort

Since the process of sorting numbers consists of moving each value to its ul-
timate location in the sorted array, we might make some progress toward a
solution if we could move a single value to its ultimate location. This idea forms
the basis of a fast sorting technique called quicksort.

One way to find the correct location of, say, the leftmost value—called a
pivot—in an unsorted array is to rearrange the values so that all the smaller
values appear to the left of the pivot, and all the larger values appear to the
right. One method of partitioning the data is shown here. It returns the final
location for what was originally the leftmost value:

QuickSort

private static int partition(int data[], int left, int right)

// pre: left <= right

// post: data[left] placed in the correct (returned) location

{

while (true)

{

// move right "pointer" toward left

while (left < right && data[left] < data[right]) right--;

if (left < right) swap(data,left++,right);

else return left;

// move left pointer toward right

while (left < right && data[left] < data[right]) left++;

if (left < right) swap(data,left,right--);

else return right;

}

}

The indices left and right start at the two ends of the array (see Figure 6.7)
and move toward each other until they coincide. The pivot value, being leftmost
in the array, is indexed by left. Everything to the left of left is smaller than the
pivot, while everything to the right of right is larger. Each step of the main loop
compares the left and right values and, if they’re out of order, exchanges them.
Every time an exchange occurs the index (left or right) that references the
pivot value is alternated. In any case, the nonpivot variable is moved toward
the other. Since, at each step, left and right move one step closer to each
other, within n steps, left and right are equal, and they point to the current
location of the pivot value. Since only smaller values are to the left of the pivot,
and larger values are to the right, the pivot must be located in its final location.
Values correctly located are shaded in Figure 6.8.



132 Sorting

right

right

left

left

2 1 43 3 65 0 −1 58 3 42 404

2 1 3 65 0 −1 58 3 424 40 43

2 1 3 65 0 −1 58 424 433 40

2 1 3 0 −1 58 424 433 6540

2 1 3 0 424 433 655840−1

2 1 3 0 424 433 655840−1

2 1 43 3 65 0 −1 58 3 42 440

Figure 6.7 The partitioning of an array’s values based on the (shaded) pivot value 40.
Snapshots depict the state of the data after the if statements of the partition method.



6.5 Quicksort 133

partition

40 43 58 65

40 58 4342651 32 04 3 −1

1 3 58 42 440 2 43 365 0 −1

−1 0

−1

1 32 3 −10 4

4342

42

43 6558

65

1 33 2

32 3

2 3

3

1 33 2

42

−1 0 1 2 3 43 42

Figure 6.8 Profile of quicksort: leftmost value (the circled pivot) is used to position
value in final location (indicated by shaded) and partition array into relatively smaller
and larger values. Recursive application of partitioning leads to quicksort.

Because the pivot segregates the larger and smaller values, we know that
none of these values will appear on the opposite side of the pivot in the final
arrangement. This suggests that we can reduce the sorting of a problem of size
n to two problems of size approximately n

2 . To finish the sort, we need only
recursively sort the values to the left and right of the pivot:

public static void quickSort(int data[], int n)

// post: the values in data[0..n-1] are in ascending order

{

quickSortRecursive(data,0,n-1);

}

private static void quickSortRecursive(int data[],int left,int right)

// pre: left <= right

// post: data[left..right] in ascending order

{

int pivot; // the final location of the leftmost value

if (left >= right) return;

pivot = partition(data,left,right); /* 1 - place pivot */

quickSortRecursive(data,left,pivot-1); /* 2 - sort small */

quickSortRecursive(data,pivot+1,right);/* 3 - sort large */

/* done! */

}



134 Sorting

In practice, of course, the splitting of the values is not always optimal (see the
placement of the value 4 in Figure 6.8), but a careful analysis suggests that even
with these “tough breaks” quicksort takes only O(n log n) time.

When either sorted or reverse-sorted data are to be sorted by quicksort, the
results are disappointing. This is because the pivot value selected (here, the
leftmost value) finds its ultimate location at one end of the array or the other.
This reduces the sort of n values to n − 1 values (and not n/2), and the sort
requires O(n) passes of an O(n) step partition. The result is an O(n2) sort.
Since nearly sorted data are fairly common, this result is to be avoided.

Notice that picking the leftmost value is not special. If, instead, we attempt
to find the correct location for the middle value, then other arrangements of
data will cause the degenerate behavior. In short, for any specific or determin-
istic partitioning technique, a degenerate arrangement exists. The key to more
consistent performance, then, is a nondeterministic partitioning that correctly
places a value selected at random (see Problem 6.15). There is, of course, a
very unlikely chance that the data are in order and the positions selected in-
duce a degenerate behavior, but that chance is small and successive runs of
the sorting algorithm on the same data are exceedingly unlikely to exhibit the
same behavior. So, although the worst-case behavior is still O(n2), its expected
behavior is O(n log n).

Quicksort is an excellent sort when data are to be sorted with little extra
space. Because the speed of partitioning depends on the random access nature
of arrays or Vectors, quicksort is not suitable when not used with random access
structures. In these cases, however, other fast sorts are often possible.

6.6 Radix Sort

After investigating a number of algorithms that sort in O(n2) or O(n log n) time,
one might wonder if it is possible to sort in linear time. If the right conditions
hold, we can sort certain types of data in linear time. First, we must investigate
a pseudogame, 52 pickup!

Suppose we drop a deck of 52 cards on the floor, and we want to not only
pick them up, but we wish to sort them at the same time. It might be most
natural to use an insertion sort: we keep a pile of sorted cards and, as we pick
up new cards, we insert them in the deck in the appropriate position. A more
efficient approach makes use of the fact that we know what the sorted deck
looks like. We simply lay out the cards in a row, with each position in the row
reserved for the particular card. As we pick up a card, we place it in its reserved
location. In the end, all the cards are in their correct location and we collect
them from left to right.

Exercise 6.1 Explain why this sorting technique always takes O(n) time for a
deck of n cards.

Such an approach is the basis for a general sorting technique called bucket sort.
By quickly inspecting values (perhaps a word) we can approximately sort them



6.6 Radix Sort 135

into different buckets (perhaps based on the first letter). In a subsequent pass
we can sort the values in each bucket with, perhaps a different sort. The buck-
ets of sorted values are then accumulated, carefully maintaining the order of
the buckets, and the result is completely sorted. Unfortunately, the worst-case
behavior of this sorting technique is determined by the performance of the al-
gorithm we use to sort each bucket of values.

Exercise 6.2 Suppose we have n values and m buckets and we use insertion sort
to perform the sort of each bucket. What is the worst-case time complexity of this
sort?

Such a technique can be used to sort integers, especially if we can partially sort
the values based on a single digit. For example, we might develop a support
function, digit, that, given a number n and a decimal place d, returns the
value of the digit in the particular decimal place. If d was 0, it would return the
units digit of n. Here is a recursive implementation:

RadixSort

public static int digit(int n, int d)

// pre: n >= 0 and d >= 0

// post: returns the value of the dth decimal place of n

// where the units place has position 0

{

if (d == 0) return n % 10;

else return digit(n/10,d-1);

}

Here is the code for placing an array of integer values among 10 buckets, based
on the value of digit d. For example, if we have numbers between 1 and 52 and
we set d to 2, this code almost sorts the values based on their 10’s digit.

public static void bucketPass(int data[], int d)

// pre: data is an array of data values, and d >= 0

// post: data is sorted by the digit found in location d;

// if two values have the same digit in location d, their

// relative positions do not change; i.e., they are not swapped

{

int i,j;

int value;

// allocate some buckets

Vector<Vector<Integer>> bucket = new Vector<Vector<Integer>>(10);

bucket.setSize(10);

// allocate Vectors to hold values in each bucket

for (j = 0; j < 10; j++) bucket.set(j,new Vector<Integer>());

// distribute the data among buckets

int n = data.length;

for (i = 0; i < n; i++)

{

value = data[i];

// determine the d'th digit of value



136 Sorting

j = digit(value,d);

// add data value to end of vector; keeps values in order

bucket.get(j).add(value);

}

// collect data from buckets back into array

// collect in reverse order to unload Vectors

// in linear time

i = n;

for (j = 9; j >= 0; j--)

{

// unload all values in bucket j

while (!bucket.get(j).isEmpty())

{

i--;

value = bucket.get(j).remove();

data[i] = value;

}

}

}

We now have the tools to support a new sort, radix sort. The approach is to
use the bucketPass code to sort all the values based on the units place. Next,
all the values are sorted based on their 10’s digit. The process continues until
enough passes have been made to consider all the digits. If it is known that
values are bounded above, then we can also bound the number of passes as
well. Here is the code to perform a radix sort of values under 1 million (six
passes):

public static void radixSort(int data[])

// pre: data is array of values; each is less than 1,000,000

// post: data in the array are sorted into increasing order

{

for (int i = 0; i < 6; i++)

{

bucketPass(data,i);

}

}

After the first bucketPass, the values are ordered, based on their units digit. All
values that end in 0 are placed near the front of data (see Figure 6.9), all the
values that end in 9 appear near the end. Among those values that end in 0, the
values appear in the order they originally appeared in the array. In this regard,
we can say that bucketPass is a stable sorting technique. All other things being
equal, the values appear in their original order.

During the second pass, the values are sorted, based on their 10’s digit.
Again, if two values have the same 10’s digit, the relative order of the values is
maintained. That means, for example, that 140 will appear before 42, because
after the first pass, the 140 appeared before the 42. The process continues, until



6.6 Radix Sort 137

0

0

0

1 2

Start

Finish

Digit 0

Digit 1

Digit 2

Digit 3

Digit 4

Digit 6

3

4

580 1 32 42 4 65

2 1 43 3 65 0 58 3 4211

11140

140

0 3 3 4 11 140 42 43 58 65

1 2 3 3 4 11 42 43 58 65 140

1 2 3 3 4 11 42 43 58 65 140

1 2 3 3 4 11 42 43 58 65 140

0 1 2 3 4 11 42 43 58 65 140

43 3

Figure 6.9 The state of the data array between the six passes of radixSort. The
boundaries of the buckets are identified by vertical lines; bold lines indicate empty buck-
ets. Since, on every pass, paths of incoming values to a bucket do not cross, the sort
is stable. Notice that after three passes, the radixSort is finished. The same would be
true, no matter the number of values, as long as they were all under 1000.



138 Sorting

all digits are considered. Here, six passes are performed, but only three are
necessary (see Problem 6.9).

There are several important things to remember about the construction of
this sort. First, bucketPass is stable. That condition is necessary if the work
of previous passes is not to be undone. Secondly, the sort is unlikely to work if
the passes are performed from the most significant digit toward the units digit.
Finally, since the number of passes is independent of the size of the data array,
the speed of the entire sort is proportional to the speed of a single pass. Careful
design allows the bucketPass to be accomplished in O(n) time. We see, then,
that radixSort is a O(n) sorting method.

While, theoretically, radixSort can be accomplished in linear time, practi-
cally, the constant of proportionality associated with the bound is large com-
pared to the other sorts we have seen in this chapter. In practice, radixSort is
inefficient compared to most other sorts.

6.7 Sorting Objects

Sorting arrays of integers is suitable for understanding the performance of vari-
ous sorts, but it is hardly a real-world problem. Frequently, the object that needs
to be sorted is an Object with many fields, only some of which are actually used
in making a comparison.

Let’s consider the problem of sorting the entries associated with an electronic
phone book. The first step is to identify the structure of a single entry in the
phone book. Perhaps it has the following form:

PhoneBook

class PhoneEntry

{

String name; // person's name

String title; // person's title

int extension; // telephone number

int room; // number of room

String building; // office building

public PhoneEntry(String n, String t, int e,

String b, int r)

// post: construct a new phone entry

{

...

}

public int compareTo(PhoneEntry other)

// pre: other is non-null

// post: returns integer representing relation between values

{

return this.extension - other.extension;

}

}



6.7 Sorting Objects 139

Rep.DeFazio, Peter 56416 2134 Rayburn

Hooley, Darlene Rep. 55711 1130 Longworth

Rep.Walden, Greg 56730 1404 Longworth

Rep. LongworthWu, David 50855 1023

SenatorWyden, Ron 45244 516 Hart

Smith, Gordon Senator 43753 404 Russell

Smith, Gordon Senator 43753 404 Russell

SenatorWyden, Ron 45244 516 Hart

Rep. LongworthWu, David 50855 1023

Rep.Blumenauer, Earl 54881 1406 Longworth

Hooley, Darlene Rep. 55711 1130 Longworth

Rep.DeFazio, Peter 56416 2134 Rayburn

Rep.Walden, Greg 56730 1404 Longworth

Data before sorting

Data after sorting by telephone

0

1

3

4

5

6

2

0

1

3

4

5

6

2

Rep.Blumenauer, Earl 54881 1406 Longworth

Figure 6.10 An array of phone entries for the 107th Congressional Delegation from
Oregon State, before and after sorting by telephone (shaded).

We have added the compareTo method to describe the relation between two
entries in the phone book (the shaded fields of Figure 6.10). The compareTo

method returns an integer that is less than, equal to, or greater than 0 when
this is logically less than, equal to, or greater than other. We can now modify
any of the sort techniques provided in the previous section to sort an array of
phone entries:

public static void insertionSort(PhoneEntry data[], int n)

// pre: n <= data.length

// post: values in data[0..n-1] are in ascending order

{

int numSorted = 1; // number of values in place

int index; // general index

while (numSorted < n)

{

// take the first unsorted value

PhoneEntry temp = data[numSorted];

// ...and insert it among the sorted:



140 Sorting

for (index = numSorted; index > 0; index--)

{

if (temp.compareTo(data[index-1]) < 0)

{

data[index] = data[index-1];

} else {

break;

}

}

// reinsert value

data[index] = temp;

numSorted++;

}

}

Careful review of this insertion sort routine shows that all the < operators have
been replaced by checks for negative compareTo values. The result is that the
phone entries in the array are ordered by increasing phone number.

If two or more people use the same extension, then the order of the resulting
entries depends on the stability of the sort. If the sort is stable, then the relative
order of the phone entries with identical extensions in the sorted array is the
same as their relative order in the unordered array. If the sort is not stable, no
guarantee can be made. To ensure that entries are, say, sorted in increasing
order by extension and, in case of shared phones, sorted by increasing name,
the following compareTo method might be used:

public int compareTo(PhoneEntry other)

// pre: other is non-null

// post: returns integer representing relation between values

{

if (this.extension != other.extension)

return this.extension - other.extension;

else return this.name.compareTo(other.name);

}

Correctly specifying the relation between two objects with the compareTo meth-
od can be difficult when the objects cannot be totally ordered. Is it always possi-
ble that one athletic team is strictly less than another? Is it always the case that
one set contains another? No. These are examples of domains that are partially
ordered. Usually, however, most types may be totally ordered, and imagining
how one might sort a collection of objects forces a suitable relation between
any pair.

6.8 Ordering Objects Using Comparators

The definition of the compareTo method for an object should define, in a sense,
the natural ordering of the objects. So, for example, in the case of a phone



6.8 Ordering Objects Using Comparators 141

book, the entries would ideally be ordered based on the name associated with
the entry. Sometimes, however, the compareTo method does not provide the
ordering desired, or worse, the compareTo method has not been defined for an
object. In these cases, the programmer turns to a simple method for specifing an
external comparison method called a comparator. A comparator is an object that
contains a method that is capable of comparing two objects. Sorting methods,
then, can be developed to apply a comparator to two objects when a comparison
is to be performed. The beauty of this mechanism is that different comparators
can be applied to the same data to sort in different orders or on different keys.
In Java a comparator is any class that implements the java.util.Comparator

interface. This interface provides the following method:

Comparator

package java.util;

public interface Comparator

{

public abstract int compare(Object a, Object b);

// pre: a and b are valid objects, likely of similar type

// post: returns a value less than, equal to, or greater than 0

// if a is less than, equal to, or greater than b

}

Like the compareTo method we have seen earlier, the compare method re-
turns an integer that identifies the relationship between two values. Unlike
the compareTo method, however, the compare method is not associated with
the compared objects. As a result, the comparator is not privy to the implemen-
tation of the objects; it must perform the comparison based on information that
is gained from accessor methods.

As an example of the implementation of a Comparator, we consider the
implementation of a case-insensitive comparison of Strings, called Caseless-

Comparator. This comparison method converts both String objects to upper-
case and then performs the standard String comparison:

Caseless-

Comparator

public class CaselessComparator implements java.util.Comparator<String>

{

public int compare(String a, String b)

// pre: a and b are valid Strings

// post: returns a value less than, equal to, or greater than 0

// if a is less than, equal to, or greater than b, without

// consideration of case

{

String upperA = ((String)a).toUpperCase();

String upperB = ((String)b).toUpperCase();

return upperA.compareTo(upperB);

}

}

The result of the comparison is that strings that are spelled similarly in differ-
ent cases appear together. For example, if an array contains the words of the
children’s tongue twister:



142 Sorting

Fuzzy Wuzzy was a bear.

Fuzzy Wuzzy had no hair.

Fuzzy Wuzzy wasn't fuzzy, wuzzy?

we would expect the words to be sorted into the following order:

a bear. Fuzzy Fuzzy Fuzzy fuzzy, had hair.

no was wasn't Wuzzy Wuzzy Wuzzy wuzzy?

This should be compared with the standard ordering of String values, which
would generate the following output:

Fuzzy Fuzzy Fuzzy Wuzzy Wuzzy Wuzzy a bear.

fuzzy, had hair. no was wasn't wuzzy?

To use a Comparator in a sorting technique, we need only replace the use
of compareTo methods with compare methods from a Comparator. Here, for
example, is an insertion sort that makes use of a Comparator to order the values
in an array of Objects:

CompInsSort

public static <T> void insertionSort(T data[], Comparator<T> c)

// pre: c compares objects found in data

// post: values in data[0..n-1] are in ascending order

{

int numSorted = 1; // number of values in place

int index; // general index

int n = data.length; // length of the array

while (numSorted < n)

{

// take the first unsorted value

T temp = data[numSorted];

// ...and insert it among the sorted:

for (index = numSorted; index > 0; index--)

{

if (c.compare(temp,data[index-1]) < 0)

{

data[index] = data[index-1];

} else {

break;

}

}

// reinsert value

data[index] = temp;

numSorted++;

}

}

Note that in this description we don’t see the particulars of the types involved.
Instead, all data are manipulated as Objects, which are specifically manipulated
by the compare method of the provided Comparator.



6.9 Vector-Based Sorting 143

6.9 Vector-Based Sorting

We extend the phone book example one more time, by allowing the PhoneEntrys
to be stored in a Vector. There are, of course, good reasons to use Vector over
arrays, but there are some added complexities that should be considered. Here
is an alternative Java implementation of insertionSort that is dedicated to the
sorting of a Vector of PhoneEntrys:

PhoneBook

protected void swap(int i, int j)

// pre: 0 <= i,j < this.size

// post: elements i and j are exchanged within the vector

{

PhoneEntry temp;

temp = get(i);

set(i,get(j));

set(j,temp);

}

public void insertionSort()

// post: values of vector are in ascending order

{

int numSorted = 0; // number of values in place

int index; // general index

while (numSorted < size())

{

// take the first unsorted value

PhoneEntry temp = (PhoneEntry)get(numSorted);

// ...and insert it among the sorted:

for (index = numSorted; index > 0; index--)

{

if (temp.compareTo((PhoneEntry)get(index-1)) < 0)

{

set(index,get(index-1));

} else {

break;

}

}

// reinsert value

set(index,temp);

numSorted++;

}

}

Recall that, for Vectors, we use the get method to fetch a value and set to
store. Since any type of object may be referenced by a vector entry, we verify the
type expected when a value is retrieved from the vector. This is accomplished
through a parenthesized cast. If the type of the fetched value doesn’t match
the type of the cast, the program throws a class cast exception. Here, we cast
the result of get in the compareTo method to indicate that we are comparing
PhoneEntrys.



144 Sorting

It is unfortunate that the insertionSort has to be specially coded for use
with the PhoneEntry objects.

Exercise 6.3 Write an insertionSort that uses a Comparator to sort a Vector

of objects.

6.10 Conclusions

Sorting is an important and common process on computers. In this chapter we
considered several sorting techniques with quadratic running times. Bubble sort
approaches the problem by checking and rechecking the relationships between
elements. Selection and insertion sorts are based on techniques that people
commonly use. Of these, insertion sort is most frequently used; it is easily
coded and provides excellent performance when data are nearly sorted.

Two recursive sorting techniques, mergesort and quicksort, use recursion
to achieve O(n log n) running times, which are optimal for comparison-based
techniques on single processors. Mergesort works well in a variety of situations,
but often requires significant extra memory. Quicksort requires a random access
structure, but runs with little space overhead. Quicksort is not a stable sort
because it has the potential to swap two values with equivalent keys.

We have seen with radix sort, it is possible to have a linear sorting algorithm,
but it cannot be based on compares. Instead, the technique involves carefully
ordering values based on looking at portions of the key. The technique is, practi-
cally, not useful for general-purpose sorting, although for many years, punched
cards were efficiently sorted using precisely the method described here.

Sorting is, arguably, the most frequently executed algorithm on computers
today. When we consider the notion of an ordered structure, we will find that
algorithms and structures work hand in hand to help keep data in the correct
order.

Self Check Problems

Solutions to these problems begin on page 445.
6.1 Why does it facilitate the swap method to have a temporary reference?
6.2 Cover the numbers below with your hand. Now, moving your hand to
the right, expose each number in turn. On a separate sheet of paper, keep the
list of values you have encounted in order. At the end you have sorted all of the
values. Which sorting technique are you using?

296 457 -95 39 21 12 3.1 64 998 989

6.3 Copy the above table onto a piece of scrap paper. Start a column of
numbers: write down the smallest table value you see into your column, cross-
ing it out of the table. Continue until you have considered each of the values.
What sorting technique are you using?



6.10 Conclusions 145

6.4 During spring cleaning, you decide to sort four months of checks re-
turned with your bank statements. You decide to sort each month separately
and go from there. Is this valid? If not, why. If it is, what happens next?

6.5 A postal employee approximately sorts mail into, say, 10 piles based
on the magnitude of the street number of each address, pile 1 has 1-10, pile
2 has 11-20, etc. The letters are then collected together by increasing pile
number. She then sorts them into a delivery crate with dividers labeled with
street names. The order of streets corresponds to the order they appear on her
mail route. What type of sort is she performing?

6.6 What is the purpose of the compareTo method?

Problems

Solutions to the odd-numbered problems begin on page 464.

6.1 Show that to exchange two integer values it is not strictly necessary to
use a third, temporary integer variable. (Hint: Use addition and/or subtrac-
tion.)

6.2 We demonstrated that, in the worst case, bubble sort performs O(n2)
operations. We assumed, however, that each pass performed approximately
O(n) operations. In fact, pass i performs as many as O(n − i) operations, for
1 ≤ i ≤ n − 1. Show that bubble sort still takes O(n2) time.

6.3 How does bubbleSort (as presented) perform in the best and average
cases?

6.4 On any pass of bubble sort, if no exchanges are made, then the rela-
tions between all the values are those desired, and the sort is done. Using this
information, how fast will bubble sort run in worst, best, and average cases?

6.5 How fast does selection sort run in the best, worst, and average cases?

6.6 How fast does insertion sort run in the best, worst, and average cases?
Give examples of best- and worst-case input for insertion sort.

6.7 Running an actual program, count the number of compares needed to
sort n values using insertion sort, where n varies (e.g., powers of 2). Plot your
data. Do the same thing for quicksort. Do the curves appear as theoretically
expected? Does insertion sort ever run faster than quicksort? If so, at what
point does it run slower?

6.8 Comparing insertion sort to quicksort, it appears that quicksort sorts
more quickly without any increase in space. Is that true?

6.9 At the end of the discussion on radix sort, we pointed out that the digit
sorting passes must occur from right to left. Give an example of an array of 5
two-digit values that do not sort properly if you perform the passes left to right.

6.10 In radix sort, it might be useful to terminate the sorting process when
numbers do not change position during a call to bucketPass. Should this mod-
ification be adopted or not?



146 Sorting

6.11 Using the millisecond timer, determine the length of time it takes to
perform an assignment of a nonzero value to an int. (Hint: It will take less
than a millisecond, so you will have to design several experiments that measure
thousands or millions of assignments; see the previous lab, on page 115, for
details.)

6.12 Running an actual program, and using the millisecond timer, System.-
currentTimeMillis, measure the length of time needed to sort arrays of data
of various sizes using a sort of your choice. Repeat the experiment but use
Vectors. Is there a difference? In either case, explain why. (Hint: You may
have to develop code along the lines of Problem 6.11.)

6.13 A sort is said to be stable if the order of equal values is maintained
throughout the sort. Bubble sort is stable, because whenever two equal val-
ues are compared, no exchange occurs. Which other sorts are stable (consider
insertion sort, selection sort, mergesort, and quicksort)?

6.14 The partition function of quicksort could be changed as follows: To
place the leftmost value in the correct location, count the number of values that
are strictly less than the leftmost value. The resulting number is the correct
index for the desired value. Exchange the leftmost value for the value at the
indexed location. With all other code left as it is, does this support a correctly
functioning quicksort? If not, explain why.

6.15 Modify the partition method used by quicksort so that the pivot is
randomly selected. (Hint: Before partitioning, consider placing the randomly
selected value at the left side of the array.)

6.16 Write a recursive selectionSort algorithm. (Hint: Each level of recur-
sion positions a value in the correct location.)

6.17 Write a recursive insertionSort algorithm.

6.18 Some of the best-performing sorts depend on the best-performing shuf-
fles. A good shuffling technique rearranges data into any arrangement with
equal probability. Design the most efficient shuffling mechanism you can, and
argue its quality. What is its performance?

6.19 Write a program called shuffleSort. It first checks to see if the data are
in order. If they are, the sort is finished. If they aren’t, the data are shuffled and
the process repeats. What is the best-case running time? Is there a worst-case
running time? Why or why not? If each time the data were shuffled they were
arranged in a never-seen-before configuration, would this change your answer?

6.20 Write a program to sort a list of unique integers between 0 and 1 million,
but only using 1000 32-bit integers of space. The integers are read from a file.



6.11 Laboratory: Sorting with Comparators

Objective. To gain experience with Java’s java.util.Comparator interface.
Discussion. In Chapter 6 we have seen a number of different sorting techniques.
Each of the techniques demonstrated was based on the fixed, natural ordering
of values found in an array. In this lab we will modify the Vector class so that it
provides a method, sort, that can be used—with the help of a Comparator—to
order the elements of the Vector in any of a number of different ways.
Procedure. Develop an extension of structure.Vector, called MyVector, that
includes a new method, sort.

Here are some steps toward implementing this new class:

1. Create a new class, MyVector, which is declared to be an extension of the
structure.Vector class. You should write a default constructor for this
class that simply calls super();. This will force the structure.Vector

constructor to be called. This, in turn, will initialize the protected fields of
the Vector class.

2. Construct a new Vector method called sort. It should have the following
declaration:

public void sort(Comparator<T> c)

// pre: c is a valid comparator

// post: sorts this vector in order determined by c

This method uses a Comparator type object to actually perform a sort of
the values in MyVector. You may use any sort that you like.

3. Write an application that reads in a data file with several fields, and, de-
pending on the Comparator used, sorts and prints the data in different
orders.

Thought Questions. Consider the following questions as you complete the lab:

1. Suppose we write the following Comparator:

import structure5.*;

import java.util.Iterator;

import java.util.Comparator;

import java.util.Scanner;

public class RevComparator<T> implements Comparator<T>

{

protected Comparator<T> base;

public RevComparator(Comparator<T> baseCompare)

{

base = baseCompare;



148 Sorting

}

public int compare(T a, T b)

{

return -base.compare(a,b);

}

}

What happens when we construct:

MyVector<Integer> v = new MyVector<Integer>();

Scanner s = new Scanner(System.in);

while (s.hasNextInt())

{

v.add(s.nextInt());

}

Comparator<Integer> c = new RevComparator<Integer>(new IntegerComparator());

v.sort(c);

2. In our examples, here, a new Comparator is necessary for each sorting
order. How might it be possible to add state information (protected
data) to the Comparator to allow it to sort in a variety of different ways?
One might imagine, for example, a method called ascending that sets the
Comparator to sort into increasing order. The descending method would
set the Comparator to sort in reverse order.

Notes:


